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Investigation of the quantum cantori regime in quarter-stadium billiards
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~Received 25 February 2002; published 10 June 2002!

We study experimentally and numerically the regime of quantum cantori in quarter-stadium billiards. Ex-
perimentally, a quarter-stadium billiard is simulated by a thin quarter-stadium microwave cavity. Using a field
perturbation technique and a circular wave expansion method we reconstruct the eigenfunctions of the quarter-
stadium microwave billiard with the parameter«50.1 in the cantori regimeN57 –63. The quarter-stadium
billiards with «50.1 and 0.05, respectively, are also investigated numerically. We show that in the quantum
cantori regime the rescaled localization length of the eigenfunctions fluctuates around a value that depends on
the parameter«.
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The Kolmogorov-Arnold-Moser~KAM ! theorem@1# al-
lows us to understand that classical chaos may be confine
certain regions of phase space. KAM tori can act as imp
etrable barriers to the probability flow. With increasing no
linearity of the system the KAM tori break up into canto
@2,3# and become partially penetrable to the chaotic orb
Amazingly, in quantum mechanics classical cantori appea
act as dynamical barriers that can entirely inhibit the dif
sive growth @4#. Recently, theoretical analysis of classic
and quantum properties of stadium billiards has led to
identification of four different localized regimes, name
perturbative, cantori, dynamical, and ergodic@5,6,8#. The dy-
namical localization regime and the ergodic regime exist a
in rough billiards and were the subject of intensive theor
cal @9–11# and experimental@12,13# work. Casati and Prose
@6,7# have shown for the quarter-stadium billiards that in t
quantum cantori regime~approximately given by 1

16 «22

,N, 1
16 «23) the rescaled localization length of the eige

functions is constant. In this paper we put this theoreti
finding into experimental and numerical tests.

Experimentally, eigenfunctions~electric field! were evalu-
ated for the thin~heighth58 mm) microwave cavity with
the shape presented in Fig. 1. The microwave cavity sim
lates the quarter-stadium billiard with the parameter«
5a/R50.1 due to the equivalence between the Schro¨dinger
equation and the Helmholtz equation. This equivalence
mains valid for frequencies less than the cutoff frequen
nc5c/2h.18.7 GHz, wherec is the speed of light.

We show that eigenfunctionsCN(r ,u) @electric field dis-
tribution EN(r ,u) inside the cavity,N is the level number#
can be determined from the form ofEN(Rc ,u) evaluated on
a quarter circle of fixed radiusRc ~see Fig. 1!. The first step
in evaluation ofEN(Rc ,u) is measurement ofEN(Rc ,u)2.
The perturbation technique developed in Ref.@14# and used
successfully in Refs.@14–17# was implemented for this pur
pose. In this method a small perturber is introduced ins
the cavity to alter its resonant frequency according to

n2nN5nN~aBN
2 2bEN

2 !, ~1!

wherenN is the Nth resonant frequency of the unperturb
cavity, a and b are geometrical factors. Equation~1! shows
that the formula cannot be used to evaluateEN

2 until the term
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containing magnetic fieldBN vanishes. To minimize the in
fluence ofBN on the frequency shiftn2nN a dielectric per-
turber @18# containing a small piece of a metallic pin wa
used. The perturber was a dielectric sphere of 3.0 mm di
eter. A small piece of a metallic pin was introduced inside
perturber in order to move it with a magnet placed on the
of the cavity. The size of the pin~2.0 mm in length and 0.40
mm in diameter! was chosen to be the smallest possible t
still allowed the perturber to follow smoothly the magn
during its movement. Relatively weak interaction betwe
the magnet and the perturber minimized the friction betwe
the sphere and the wall and improved the accuracy of p
tioning of the perturber inside the cavity. For the same p
pose additional lubrication of the cavity’s wall was use
Using such a perturber we had no positive frequency sh
that would exceed the uncertainty of frequency shift m
surements~20 kHz!. The resonant frequency variation co
nected with the thermal expansion of the brass cavity w
estimated to be 180 kHz/deg atn63.7.6 GHz and was not
negligible in comparison to the typical frequency shift of

FIG. 1. The quarter-stadium billiard with radiusR and straight
segmenta. In the experiment the quarter-stadium microwave b
liard with R520 cm anda52 cm ~parameter«5a/R50.1) was
used. Squared eigenfunctionsuCN(Rc ,u)u2 ~see text! were evalu-
ated on a quarter circle of fixed radiusRc519 cm. The billiard’s
boundaryG is marked with the bold line.
©2002 The American Physical Society02-1
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MHz caused by the perturber. To eliminate this effect
temperature of the cavity was stabilized with the accuracy
0.05°.

The regime of quantum cantori for the experimen
quarter-stadium billiard («50.1) is defined forN57 –63.
Using a field perturbation technique we measured squa
eigenfunctionsuCN(Rc ,u)u2 for 36 modes within the speci
fied region. The range of corresponding eigenfrequen
was fromn753.04 GHz ton6357.59 GHz. The measure
ments were performed at 2 mm steps along a quarter c
with fixed radiusRc519 cm. This step was small enough
reveal in details the space structure of low-lying levels.
Fig. 2 we show the examples of the squared eigenfunc
uCN(Rc ,u)u2 evaluated for levels 19 and 56. The perturb
tion method used in our measurements allows us to ext
information about the eigenfunction amplitudeuCN(Rc ,u)u
at any given point of the cavity but it does not allow
determine the sign ofCN(Rc ,u) @19#. Numerical calcula-
tions performed for the quarter-stadium billiards~e.g., Ref.
@20#! suggest the following sign-assignment strategy. We
gin with the identification of all close to zero minima o
uCN(Rc ,u)u. Then the sign ‘‘minus’’ maybe arbitrarily as
signed to the region between the first and the second m
mum, ‘‘plus’’ to the region between the second minimum a
the third one, the next ‘‘minus’’ to the next region betwe
consecutive minima and so on. In this way we construct
‘‘trial eigenfunction’’ CN(Rc ,u). If the assignment of the
signs is correct we should reconstruct the eigenfunc
CN(r ,u) inside the billiard with the boundary conditio
CN(r G ,uG)50.

FIG. 2. Squared eigenfunctionsuCN(Rc ,u)u2 ~in arbitrary units!
measured on a quarter circle with radiusRc519 cm ~see Fig. 1!
with the level numbers:~a! N519 (n19.4.37 GHz), ~b! N556
(n56.7.17 GHz).
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As was proposed in Ref.@6#, eigenfunctions of a quarter
stadium billiard may be expanded in terms of circular wav
~here only odd-odd states in expansion are considered!

CN~r ,u!5(
s51

M

asCsJ2s~kNr !sin~2su!, ~2!

where

Cs5@~p/4!*0
r maxuJ2s~kNr !u2rdr #21/2

and

kN52pnN /c
.

In Eq. ~2! the number of basis functions is limited toM
5kNr max/25 l N

max/2, with r max5R1a. l N
max5kNr max is a

semiclassical estimate for the maximum possible ang
momentum for a givenkN . Circular waves with angular mo
mentum 2s.2M correspond to evanescent waves and c
be neglected. Coefficientsas may be extracted from the
‘‘trial eigenfunction’’ CN(Rc ,u) via

as5Fp4 CsJ2s~kNRc!G21E
0

p/2

CN~Rc ,u!sin~2su!du.

~3!

Since our ‘‘trial eigenfunction’’CN(Rc ,u) is only defined on
a quarter circle of fixed radiusRc and is not normalized we
imposed normalization of the coefficientsas , (s51

M uasu251.
Now, the coefficientsas and Eq.~2! can be used to recon
struct the eigenfunctionCN(r ,u) of the billiard. Figures 3
and 4 show reconstructed eigenfunctionC19(r ,u) of the bil-
liard for two different sign assignments in the ‘‘trial eigen
function’’ C19(Rc ,u). Due to experimental uncertainties an
the finite step size in the measurements ofuCN(Rc ,u)u2 the
eigenfunctionsCN(r ,u) are not exactly zero at the bounda
G. As the quantitative measure of the sign assignment qua
we chose the integral*GuCN(r ,u)udl calculated along the
billiard’s boundaryG. For the two cases in Figs. 3 and 4 w
got the values of 0.086 and 1.281, respectively, which clea
show that the reconstruction of the eigenfunctionC19(r ,u)
was done properly only in the first case~Fig. 3!. Using the
method of the ‘‘trial eigenfunction’’ we were able to recon
struct 36 experimental eigenfunctions of the quarter-stad
billiard with the level numberN between 7 and 63. The
remaining 21 eigefunctions from the quantum cantori reg
N57 –63 were not reconstructed due to the problems w
the measurements ofuCN(Rc ,u)u2 along a quarter circle co
inciding with one of the nodal lines ofCN(r ,u).

The localization lengthl of the experimental eigenfunc
tions CN(r ,u) was estimated using the following formula:

l 5b minHNA; (
sPA

uasu2>0.99J , ~4!

where the numerical constantb5231.38 @6#. The 99% lo-
calization length~4! is proportional to the minimal numbe
2-2
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NA of circular eigenfunctions that are needed to support 9
probability. Such a choice of the localization length is co
nected with the fact that for the stadium billiard localizati
is algebraic@6#. Casati and Prosen@6# observed that the 99%
localization length is the least sensitive to the slowly dec
ing tails of the distributionuasu2.

In Fig. 5 we show the rescaled localization lengths
5l / l N

max calculated for the experimental eigenfunctio
CN(r ,u) lying in the quantum cantori regionN57 –63 ver-
sus the scaling variablex5«3/2kNR. Each point is obtained
by averaging over five eigenstates. The least-squares fi
the experimental data gave the line whose slope 0.0560.11
agrees within the error with the expected slope of 0. T
average value of the rescaled localization lengths̄ was esti-
mated to be 0.7260.02. Figure 5 provides the experiment
confirmation of the predicted existence of the quantum c
tori regime where the rescaled localization length of
eigenfunctions does not depend on average on the level n
ber N.

Investigation of the quantum cantori regime for billiar
with smaller parameter« requires estimation of eigenfunc

FIG. 3. Panel~a!, ‘‘trial eigenfunction’’ C19(Rc ,u) obtained
from the measureduC19(Rc ,u)u2 using a sign assignment strateg
(2,1,2,1, . . . ). Panel ~b!, eigenfunction of the experimenta
billiard C19(r ,u) reconstructed from the ‘‘trial eigenfunction
C19(Rc ,u). The amplitudes have been converted into a gray sc
with white corresponding to large positive and black correspond
to large negative values, respectively. Dimensions of the billiard
given in centimeters. Let us note that the eigenfunctionC19(r ,u)
has proper boundary conditions,C19(r G ,uG).0 ~see text!.
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tions with much higher level numbers, e.g., 25,N,500 for
«50.05. Due to experimental limitations@e.g., step of 2 mm
in measurements ofuCN(Rc ,u)u2# we could not do it experi-
mentally. Instead we decided to analyze such a billiard
merically. Eigenfunctions of the quarter-stadium billiard (R
520 cm, a51 cm, and«5a/R50.05) were calculated
using the method based on the Green’s function appro
BIM ~the boundary integral method! @21,11#. This method
was also used to calculate eigenfunctions (N57 –63) for our
experimental quarter-stadium billiard. It was tested@11# that
BIM allows for effective calculation of relatively low eigen
values and eigenfunctions of quantum billiards (N,1000)
and from this point of view it can be treated as complem
tary to the method of Vergini and Saraceno@22# used in Ref.
@6# that works very efficiently for much higherN.

In Fig. 5 we show our numerical results. For«50.1 the
rescaled localization lengths is compared to the experimen
tal one. As we see, the agreement is very good. Also h
each point is obtained by averaging over five eigenstates.
the billiard with the parameter«50.05 the rescaled localiza
tion lengths also does not depend on the scaling variablex.
Each point in these calculations is obtained by averag

le
g
re

FIG. 4. Panel~a!, another ‘‘trial eigenfunction’’C19(Rc ,u) ob-
tained from the measureduC19(Rc ,u)u2. Panel~b! eigenfunction
C19(r ,u) reconstructed from the ‘‘trial eigenfunction’’C19(Rc ,u)
does not fulfill the boundary conditionsC19(r G ,uG).0 and has to
be rejected. The amplitudes have been converted into a gray s
with white corresponding to large positive and black correspond
to large negative values, respectively. Dimensions of the billiard
given in centimeters.
2-3



r
of
h

ith

n-
of

to
an-
m-

en-

c-

ce

rgy
an

e

. T
ca

by
s

4

tu

-

c-
e
ction
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over 25 consecutive eigenstates. Such a behavior of the
caled localization lengths strongly supports the existence
the quantum cantori regime in quarter-stadium billiards. T
average value of the rescaled localization lengths̄.0.47

FIG. 5. Rescaled localization lengths5l / l N
max versus the scal-

ing variablex5«3/2kNR in the regime of quantum cantori. For th
quarter-stadium billiard with«50.1 experimental results~empty
circles! are compared with the numerical ones~full circles!. In both
cases points were obtained by averaging over five eigenstates
solid line marks the average value of experimental rescaled lo

ization lengths̄50.7260.02. For the billiard with«50.05 numeri-
cal results~full squares! are presented. Each point was obtained
averaging over 25 consecutive eigenstates. The solid line show

average values̄50.4760.01 obtained by averaging over all 42
numerically calculated eigenstates (N576–499).

FIG. 6. Structure of the energy surface in the regime of quan
cantori. Here we show the squared amplitudesuCnl

(N)u2 for the eigen-
functions:~a! N542 («50.1),~b! N5365 («50.05). In both cases
the eigenfunctions are localized in then,l basis. Solid lines show
the semiclassical estimation of the energy surface~see text!.
06620
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60.01 is smaller than the one obtained for the billiard w
«50.1. Moreover, according to formulas~7! and~17! in Ref.
@6#, s̄5 p̄5k«, wherep̄ is the average size of classical ca
tori and k is some numerical constant, the average size
classical cantori for the billiard with«50.05 is smaller than
for the billiard with «50.1.

Knowledge of the billiard’s eigenfunctions allows us
find the structure of the energy surface in the regime of qu
tum cantori. For this reason we extracted eigenfunction a
plitudesCnl

(N)5^n,l uN& in the basisn,l of a quarter-circular
billiard with radius r max, where n51,2,3, . . . enumerates
the zeros of the Bessel functions andl 51,2,3, . . . is the
angular quantum number. The squared amplitudesuCnl

(N)u2

and their projections into the energy surface for the repres
tative experimental eigenfunction (N542, «50.1) and the
numerical eigenfunction (N5365, «50.05) are shown in
Figs. 6~a! and 6~b!, respectively. In both cases the eigenfun
tions are localized in then,l basis. The full lines on
the projection planes in Fig. 6 mark the energy surfa
of a quarter-circular billiardH(n,l )5EN5kN

2 estimated
from the semiclassical formula @13#: A( l N

max)22 l 2

2 larctan@l21A( l N
max)22 l 2#1p/45pn. The peaks uCnl

(N)u2

are spread almost perfectly along the line marking the ene
surface. It is worth noting that in the regime of Shnirelm
ergodicity investigated in rough billiards@11# the eigenstates
are extended over the whole energy surface.
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FIG. 7. Amplitude distributionP(CA1/2) for the eigenstates.~a!
N542 («50.1) and~b! N5365 («50.05) constructed as histo
grams with bin equal to 0.1. The width of the distributionP(C)
was rescaled to unity by multiplying normalized to unity eigenfun
tion by the factorA1/2, where A denotes the billiard’s area. Th
dashed line shows the standard normalized Gaussian predi

P0(CA1/2)5(1/A2p)e2C2A/2.
2-4
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An additional confirmation of nonergodic behavior of th
measured and calculated eigenfunctions can be also so
in the form of the amplitude distributionP(C) @23,20#. For
irregular, chaotic states the probability of finding the valueC
at any point inside the billiard, without knowledge of th

FIG. 8. The spatial intensity distributionP(AuCu2) of the mea-
sured and calculated eigenfunctions. Panel~a!, the bold line shows
P(AuCu2) calculated for 36 experimental eigenfunctions~range of
N57 –63) of the quarter-stadium billiard with«50.1 compared to
the Thomas-Porter distribution~dashed line! and the intensity dis-
tribution P(AuCu2) evaluated for a quarter-circular billiard wit
radius R522 cm ~thin line!. In calculations ofP(AuCu2) for a
quarter-circular billiard only eigenstates with the level numberN
57 – 63 were taken into account. Panel~b!, the bold line shows
P(AuCu2) calculated for 424 numerical eigenfunctions (N
576–499) of the quarter-stadium billiard with«50.05 compared
to the Thomas-Porter distribution~dashed line! and the intensity
distributionP(AuCu2) evaluated for a quarter-circular billiard wit
radiusR522 cm ~thin line!. P(AuCu2) for a quarter-circular bil-
liard was calculated for eigenstates with the level numb
N576–499.
cs
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surrounding values, should be distributed as a Gauss
P(C);e2bC2

. The amplitude distributionsP(CA1/2) for
the experimental eigenfunctionN542 («50.1) and the nu-
merical oneN5365 («50.05) are shown in Fig. 7. They
were constructed as normalized to unity histograms with
bin equal to 0.1. Each particular histogram was built us
approximately 48 000 values of an eigenfunction. The wid
of the amplitude distributionP(C) was rescaled to unity by
multiplying normalized to unity eigenfunction by the facto
A1/2, whereA denotes billiard’s area~see formula~23! in Ref.
@20#!. For all measured and calculated eigenfunctions~results
presented in Fig. 7 are no exceptions! there is no agreemen
with the standard normalized Gaussian predict
P0(CA1/2)5(1/A2p)e2C2A/2 that strongly suggests tha
chaos is suppressed in the quantum cantori regime.

Finally, we calculated the spatial intensity distributio
P(AuCu2) of the measured and calculated eigenfunctio
Our results are presented in Fig. 8. In the calculations
P(AuCu2), 36 experimental eigenfuctions in the range ofN
57 –63 @Fig. 8~a!# and 424 numerical eigenfuctionsN
576–499@Fig. 8~b!# were included. The deviation from th
Porter-Thomas distribution predicted for chaotic systems
very significant. For comparison, we also show the intens
distribution P(AuCu2) evaluated for a quarter-circular bil
liard with radiusR522 cm. It is interesting to note that th
intensity distributions calculated in the regime of quantu
cantori are much closer to the distributions calculated fo
quarter-circular billiard than to the Porter-Thomas distrib
tion.

In summary, we evaluated experimentally and nume
cally eigenfunctions for quarter-stadium billiards in the r
gime of quantum cantori. We showed that in the quant
cantori regime the rescaled localization length of the eig
functions fluctuates around a value that depends on the
rameter«. We demonstrated that in the regime of quantu
cantori the eigenfunctions are localized in then,l basis, the
amplitude distributionsP(CA1/2) are different from the stan
dard normalized Gaussian predictionP0(CA1/2)
5(1/A2p)e2C2A/2, and the spatial intensity distribution
P(AuCu2) of the measured and calculated eigenfunctions
viate from the Porter-Thomas distribution.

N.S. and L.S. acknowledge partial support by KBN Gra
No. 2 P03B 023 17. We thank G. Casati, Sz. Bauch, and
Prosen for stimulating discussions.
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