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Investigation of the quantum cantori regime in quarter-stadium billiards
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We study experimentally and numerically the regime of quantum cantori in quarter-stadium billiards. Ex-
perimentally, a quarter-stadium billiard is simulated by a thin quarter-stadium microwave cavity. Using a field
perturbation technique and a circular wave expansion method we reconstruct the eigenfunctions of the quarter-
stadium microwave billiard with the parameter=0.1 in the cantori regimé&l=7-63. The quarter-stadium
billiards with e=0.1 and 0.05, respectively, are also investigated numerically. We show that in the quantum
cantori regime the rescaled localization length of the eigenfunctions fluctuates around a value that depends on
the parametes.
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The Kolmogorov-Arnold-MosefKAM ) theorem[1] al-  containing magnetic fiel8, vanishes. To minimize the in-
lows us to understand that classical chaos may be confined fluence ofBy on the frequency shift— vy a dielectric per-
certain regions of phase space. KAM tori can act as impenturber [18] containing a small piece of a metallic pin was
etrable barriers to the probability flow. With increasing non-ysed. The perturber was a dielectric sphere of 3.0 mm diam-
linearity of the system the KAM tori break up into cantori eter. A small piece of a metallic pin was introduced inside the
[2,3] and become partially penetrable to the chaotic orbitsperturber in order to move it with a magnet placed on the top
Amazingly, in quantum mechanics classical cantori appear tgf the cavity. The size of the pi(2.0 mm in length and 0.40
act as dynamical barriers that can entirely inhibit the diffu- ;i diameterwas chosen to be the smallest possible that
sive growth[4]. Recently, theoretical analysis of classical i 4j1owed the perturber to follow smoothly the magnet

and quantum properties of stadium billiards has led to theduring its movement. Relatively weak interaction between

Idee}?j:[;c;;:i?en C(;ntg;’i'r dd'EgrrﬁizglIogr?é'zerdogc%r%e?hgzm_ely’ the magnet and the perturber minimized the friction between
P ' » Ay ' 9 = y he sphere and the wall and improved the accuracy of posi-

namical localization regime and the ergodic regime exist als ioning of the perturber inside the cavity. For the same pur-
in rough billiards and were the subject of intensive theoreti- g P ' P

cal[9-11] and experimentdl12,13 work. Casati and Prosen pose additional lubrication of the cavity’s wall was used.
[6,7] have shown for the quarter-stadium billiards that in theUsmg such a perturber we had no positive frequency shifts

; X . . 1 _» that would exceed the uncertainty of frequency shift mea-
guantum cantori regimdapproximately given byize 20 k h ' L
<N<%e~3) the rescaled localization length of the eigen- surementg20 kH2). The resonant frequency variation con-
functiolr('ils is constant. In this paper we put this theoreticaPeCted with the thermal expansion of the brass cavity was
o S paper P estimated to be 180 kHz/deg a¢;~7.6 GHz and was not
finding into experimental and numerical tests.

Experimentally, eigenfunctionglectric field were evalu- negligible in comparison to the typical frequency shift of 1

ated for the thinlheighth=8 mm) microwave cavity with
the shape presented in Fig. 1. The microwave cavity simu-
lates the quarter-stadium billiard with the parameter
=a/R=0.1 due to the equivalence between the Sdimger
equation and the Helmholtz equation. This equivalence re-
mains valid for frequencies less than the cutoff frequency
ve=c/2h=18.7 GHz, where is the speed of light.

We show that eigenfunction® (r, 6) [electric field dis-
tribution Ey(r,#) inside the cavityN is the level numbdr
can be determined from the form Bi(R;, 6) evaluated on
a quarter circle of fixed radiuR, (see Fig. 1 The first step
in evaluation ofEy(R.,6) is measurement oEy(R;,6)>2.

The perturbation technique developed in Ré&#] and used
successfully in Refd.14—-17 was implemented for this pur-
pose. In this method a small perturber is introduced inside

the cavity to alter its resonant frequency according to a
FIG. 1. The quarter-stadium billiard with radii&and straight
v—vy=rvyn(aB%—bE?) (1) - : : -
NT VN N N/ segmenta. In the experiment the quarter-stadium microwave bil-

) liard with R=20 cm anda=2 cm (parametee =a/R=0.1) was
Where VN IS the Nth resonant frequency of the Unperturbed used. Squared eiger‘]functiot*mN(RC,0)|2 (See te)@t were evalu-
cavity, a andb are geometrical factors. Equatioh) shows  ated on a quarter circle of fixed radi®&=19 cm. The billiard’s
that the formula cannot be used to evalugfguntil the term  boundaryT" is marked with the bold line.

1063-651X/2002/68)/0662026)/$20.00 65 066202-1 ©2002 The American Physical Society



NAZAR SAVYTSKYY AND LESZEK SIRKO PHYSICAL REVIEW E 65 066202

8 - - - As was proposed in Ref6], eigenfunctions of a quarter-
(@) stadium billiard may be expanded in terms of circular waves
6t (here only odd-odd states in expansion are considered
Né: M
< A T W\(r,0)= > aClas(kyr)sin(2s6), 2)
2"— s=1
2L 4
where
0 _ r 2 —-1/2
- Cs=[(m/4) [ 2 Is(kyr)|“rdr
00 o o - s=L(/4) [ "] Ips(knr )| *rdr]
3 . ' . and
6 (b) kN= 27TVN /c
:*» 4t 1 In Eq. (2) the number of basis functions is limited kb
R =KnMmad2= 1022, with 1= R+a. 1N =Kylmay IS @
2t 1 semiclassical estimate for the maximum possible angular
momentum for a giveRy, . Circular waves with angular mo-
0 mentum Z>2M correspond to evanescent waves and can
0.0 05 10 L5 be neglected. Coefficientag may be extracted from the

0 “trial eigenfunction” ¥ (R, #) via
. . . . . -1
FIG. 2. Squared eigenfunctiof® (R, , #)|? (in arbitrary unit$ | W .
measured on a quarter circle with radigs=19 cm (see Fig. 1 as= chst(kNRc) o WN(Re, 0)sin(2s6)d 6.
with the level numbers(a) N=19 (v14=4.37 GHz),(b) N=56 (3)
(V55 7.17 GHZ)

Since our “trial eigenfunction'V (R, , #) is only defined on

MHz caused by the perturber. To eliminate this effect thed quarter circle of fixed radiug; and is not normahzed we
temperature of the cavity was stabilized with the accuracy ofmposed normalization of the coefficierds, =¢_,|aq?=1
0.05°. Now, the coefficientsag and Eq.(2) can be used to recon-

The regime of quantum cantori for the experimentalstruct the eigenfunctioy(r,¢) of the billiard. Figures 3
quarter-stadium billiard =0.1) is defined forN=7-63. and 4 show reconstructed eigenfunctdn(r, 8) of the bil-
Using a field perturbation technique we measured squarelifrd for two different sign assignments in the “trial eigen-
eigenfunctiong W (R, , )| for 36 modes within the speci- function” ¥ ,o(R;,6). Due to experimental uncertainties and
fied region. The range of corresponding eigenfrequenciethe finite step size in the measurement$®f (R, , 0)|? the
was fromv;=3.04 GHz tovg;=7.59 GHz. The measure- eigenfunctions¥\(r,6) are not exactly zero at the boundary
ments were performed at 2 mm steps along a quarter circlE. As the quantitative measure of the sign assignment quality
with fixed radiusR,=19 cm. This step was small enough to we chose the integraf|¥y(r,6)|dl calculated along the
reveal in details the space structure of low-lying levels. Inbilliard’s boundaryI’. For the two cases in Figs. 3 and 4 we
Fig. 2 we show the examples of the squared eigenfunctiogot the values of 0.086 and 1.281, respectively, which clearly
|¥\(Re,6)|? evaluated for levels 19 and 56. The perturba-show that the reconstruction of the eigenfunctibng(r, 6)
tion method used in our measurements allows us to extrastas done properly only in the first cagig. 3). Using the
information about the eigenfunction amplitut¥ \(R., 0)| method of the “trial eigenfunction” we were able to recon-
at any given point of the cavity but it does not allow to struct 36 experimental eigenfunctions of the quarter-stadium
determine the sign o’ y(R.,#) [19]. Numerical calcula- billiard with the level numberN between 7 and 63. The
tions performed for the quarter-stadium billiar@sg., Ref.  remaining 21 eigefunctions from the quantum cantori region
[20]) suggest the following sign-assignment strategy. We beN=7-63 were not reconstructed due to the problems with
gin with the identification of all close to zero minima of the measurements ¢¥ (R, 6)|? along a quarter circle co-
|¥\(Re,0)|. Then the sign “minus” maybe arbitrarily as- inciding with one of the nodal lines oF (r, ).
signed to the region between the first and the second mini- The localization lengtly” of the experimental eigenfunc-
mum, “plus” to the region between the second minimum andtions W (r,#) was estimated using the following formula:
the third one, the next “minus” to the next region between
consecutive minima and so on. In this way we construct our
“trial eigenfunction” ¥ (R.,0). If the assignment of the
signs is correct we should reconstruct the eigenfunction
W(r,0) inside the billiard with the boundary condition where the numerical constapt=2x1.38[6]. The 99% lo-
Yn(rr,6r)=0. calization length(4) is proportional to the minimal number

/=B min{ Ny, >, |ag?=0.99, (4)
seA
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FIG. 3. Panel(a), “trial eigenfunction” ¥4(R.,6) obtained FIG. 4. Panela), another “trial eigenfunction™ (R, , ) ob-
from the measureti (R, )|? using a sign assignment strategy tained from the measureld ;o(R.,6)|?. Panel(b) eigenfunction
(=,+,—,+,...). Panel(b), eigenfunction of the experimental W4(r,6) reconstructed from the “trial eigenfunction?;o(R. , 6)
billiard W,4(r,d) reconstructed from the “trial eigenfunction” does not fulfill the boundary conditionB¢(r,6r)=0 and has to
¥.4R.,6). The amplitudes have been converted into a gray scalde rejected. The amplitudes have been converted into a gray scale
with white corresponding to large positive and black correspondingvith white corresponding to large positive and black corresponding
to large negative values, respectively. Dimensions of the billiard argo large negative values, respectively. Dimensions of the billiard are
given in centimeters. Let us note that the eigenfunctiop(r, 6) given in centimeters.
has proper boundary condition®,;o(rr,6r) =0 (see texk

] ) ) tions with much higher level numbers, e.g.,<28<<500 for
N of circular eigenfunctions that are needed to support 99%, — g 05, Due to experimental limitatiofie.g., step of 2 mm
probability. Such a choice of the localization length is con-j, measurements 3f y (R, 8)|2] we could not do it experi-
nected with the fact that for the stadium billiard localization mentally. Instead we deccided to analyze such a billiard nu-

is algebraid6]. Casati and Prose6] observed that the 99% nerically. Eigenfunctions of the quarter-stadium billiai@ (
localization length is the least sensitive to the slowly decay— 5 cm, a=1 cm, ande=a/R=0.05) were calculated
ing tails of the distributiorjay|?. o using the method based on the Green’s function approach,
In Fig. 5 we show the rescaled localization length g\ (the boundary integral methpd21,11. This method
=//IJ®* calculated for the experimental eigenfunctionsyas also used to calculate eigenfunctioNs<(7 —63) for our
W(r, ) lying in the quantum cantori regioN=7-63 ver-  experimental quarter-stadium billiard. It was tesfed] that
sus the scaling variable=£%%yR. Each point is obtained BIM allows for effective calculation of relatively low eigen-
by averaging over five eigenstates. The least-squares fit {gajues and eigenfunctions of quantum billiard$é<{1000)
the experimental data gave the line whose slope @31  and from this point of view it can be treated as complemen-
agrees within the error with the expected slope of 0. Theary to the method of Vergini and Saracd@@] used in Ref.
average value of the rescaled localization lengtivas esti- [6] that works very efficiently for much highé.
mated to be 0.720.02. Figure 5 provides the experimental  In Fig. 5 we show our numerical results. Fo+=0.1 the
confirmation of the predicted existence of the quantum canrescaled localization lengt is compared to the experimen-
tori regime where the rescaled localization length of thetal one. As we see, the agreement is very good. Also here
eigenfunctions does not depend on average on the level nureach point is obtained by averaging over five eigenstates. For
ber N. the billiard with the parameter=0.05 the rescaled localiza-
Investigation of the quantum cantori regime for billiards tion lengtho also does not depend on the scaling variable
with smaller parametet requires estimation of eigenfunc- Each point in these calculations is obtained by averaging
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FIG. 5. Rescaled localization length= /1" versus the scal-
ing variablex=¢%%yR in the regime of quantum cantori. For the
quarter-stadium billiard withe=0.1 experimental resultéempty
circles are compared with the numerical onédll circles). In both
cases points were obtained by averaging over five eigenstates. The
solid line marks the average value of experimental rescaled local-
ization lengtho=0.72+0.02. For the billiard withe =0.05 numeri-
cal results(full square$ are presented. Each point was obtained by
averaging over 25 consecutive eigenstates. The solid line shows the
average valuer=0.47+0.01 obtained by averaging over all 424
numerically calculated eigenstated € 76—499).

P(AYw)

P(A" )
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Ay

FIG. 7. Amplitude distributiorP(¥ A'?) for the eigenstatesa)

N=42 (¢=0.1) and(b) N=365 (¢=0.05) constructed as histo-
over 25 consecutive eigenstates. Such a behavior of the regrams with bin equal to 0.1. The width of the distributi®{¥)

caled localization lengtlr strongly supports the existence of was rescaled to unity by multiplying normalized to unity eigenfunc-

the quantum cantori regime in quarter-stadium billiards. Theion by the factorA'2 where A denotes the billiard’s area. The

average value of the rescaled localization Ien&ﬁOA?

dashed line shows the standard normalized Gaussian prediction

Po(WAY) = (1/\2m)e T*A2,

(a)

+0.01 is smaller than the one obtained for the billiard with
B2 £=0.1. Moreover, acg)rding to formul@8) and(17) in Ref.

[6], c=p= ke, wherep is the average size of classical can-
tori and x is some numerical constant, the average size of
20 classical cantori for the billiard witls=0.05 is smaller than
for the billiard withe=0.1.

Knowledge of the billiard’s eigenfunctions allows us to
find the structure of the energy surface in the regime of quan-
" tum cantori. For this reason we extracted eigenfunction am-
plitudesC
billiard with radiusr .y, Wwheren=1,2,3 ...
the zeros of the Bessel functions ahd1,2,3 ...
angular quantum number. The squared amplitudz4’|?
and their projections into the energy surface for the represen-
tative experimental eigenfunctioNE 42, £=0.1) and the
numerical eigenfunctionN=365, £=0.05) are shown in
Figs. Ga) and @b), respectively. In both cases the eigenfunc-
tions are localized in then,l
the projection planes in Fig. 6 mark the energy surface
of a quarter-circular billiardH(n,l)=Eyn= kﬁ estimated
from

|Q:2)| 203,
0.20

0
00
"

<5

)
X

e
2
»
B

=
I
Rk
i
L
Q0

&
06)0
4‘

W’,‘
W
|
&

5
&
X

<>

the

(N) _

nl —

(n,I|N) in the basis,| of a quarter-circular
enumerates
is the

basis. The full lines on

semiclassical formula[13]: (IN?)%—12

- _ N
FIG. 6. Structure of the energy surface in the regime of quantuni— | arctal WAR®)?=12]+ w/4=mn. The peaks|C{"|?

cantori. Here we show the squared amplituf24”|? for the eigen-
functions:(a) N=42 (¢=0.1),(b) N=365 (¢ =0.05). In both cases
the eigenfunctions are localized in thel basis. Solid lines show
the semiclassical estimation of the energy surfi@es text
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are spread almost perfectly along the line marking the energy
surface. It is worth noting that in the regime of Shnirelman
ergodicity investigated in rough billiard41] the eigenstates
are extended over the whole energy surface.
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surrounding values, should be distributed as a Gaussian,
10° @ ; P(¥)~e AY*. The amplitude distribution®(WA?) for

‘\ the experimental eigenfunctidd=42 (¢=0.1) and the nu-
merical oneN=365 (¢=0.05) are shown in Fig. 7. They
were constructed as normalized to unity histograms with the
bin equal to 0.1. Each particular histogram was built using
approximately 48 000 values of an eigenfunction. The width
of the amplitude distributioi? (W) was rescaled to unity by
multiplying normalized to unity eigenfunction by the factor
AY2 whereA denotes billiard’s aresee formulg23) in Ref.

PANP)

0 2 4 6 g 10 [20]). For all measured and calculated eigenfunctigasults
- presented in Fig. 7 are no exceptiptisere is no agreement
10° ®) - with the standard normalized Gaussian prediction

Po(WAY) = (1/\2m)e VM2 that strongly suggests that
chaos is suppressed in the quantum cantori regime.

Finally, we calculated the spatial intensity distribution
P(A|¥|?) of the measured and calculated eigenfunctions.
Our results are presented in Fig. 8. In the calculations of
P(A|W|?), 36 experimental eigenfuctions in the rangeNbf
=7-63 [Fig. 8@a)] and 424 numerical eigenfuctionil

P(ANP)

10°F , , , 9 =76-499[Fig. 8b)] were included. The deviation from the
0 2 4 6 8 10 Porter-Thomas distribution predicted for chaotic systems is
Al very significant. For comparison, we also show the intensity

distribution P(A|¥|?) evaluated for a quarter-circular bil-
liard with radiusR=22 cm. It is interesting to note that the
intensity distributions calculated in the regime of quantum
cantori are much closer to the distributions calculated for a
quarter-circular billiard than to the Porter-Thomas distribu-
tion.

In summary, we evaluated experimentally and numeri-
cally eigenfunctions for quarter-stadium billiards in the re-
=7-63 were taken into account. Parib), the bold line shows 9/M€ Qf qqantum cantori. \We Sh_OW?d that in the qual_’ltum
P(A[¥|?) calculated for 424 numerical eigenfunctionsN ( cantori regime the rescaled localization length of the eigen-
=76-499) of the quarter-stadium billiard with=0.05 compared ~functions fluctuates around a valge that depends on the pa-
to the Thomas-Porter distributioftashed ling and the intensity ~rameters. We demonstrated that in the regime of quantum
distribution P(A|W|?) evaluated for a quarter-circular billiard with cantori the eigenfunctions are localized in ¢ basis, the
radiusR=22 cm (thin line). P(A|¥|?) for a quarter-circular bil- amplitude distribution® (W A'?) are different from the stan-
liard was calculated for eigenstates with the level numbersdard normalized Gaussian prediction Po(WAY?)

2 . . . . . .
N=76-499. =(1/\J2m)e V"2 and the spatial intensity distributions

" . . . ) P(A|¥|?) of the measured and calculated eigenfunctions de-
An additional confirmation of nonergodic behavior of the | ;2te from the Porter-Thomas distribution
i .

measured and calculated eigenfunctions can be also sought

in the form of the amplitude distributioR (V) [23,20. For N.S. and L.S. acknowledge partial support by KBN Grant
irregular, chaotic states the probability of finding the valtie  No. 2 PO3B 023 17. We thank G. Casati, Sz. Bauch, and T.
at any point inside the billiard, without knowledge of the Prosen for stimulating discussions.

FIG. 8. The spatial intensity distributid®(A|¥|?) of the mea-
sured and calculated eigenfunctions. Pgaglthe bold line shows
P(A|¥|?) calculated for 36 experimental eigenfunctiagnange of
N=7-63) of the quarter-stadium billiard with=0.1 compared to
the Thomas-Porter distributiofashed ling and the intensity dis-
tribution P(A|¥|?) evaluated for a quarter-circular billiard with
radius R=22 cm (thin line). In calculations ofP(A|¥|?) for a
quarter-circular billiard only eigenstates with the level number
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